DES Lab Centrifuge: Precision Testing at Over 100G

Explore the capabilities of the DES lab centrifuge, designed to simulate extreme operational conditions by generating inertia forces up to and exceeding 100Gs. This facility is tailored for rigorous acceleration testing, ensuring that military and aerospace products can endure the harshest environments.

This facility not only adheres to rigorous international testing standards but also incorporates proprietary DES technologies that enhance test accuracy and reliability. Utilizing our cutting-edge data acquisition systems, we ensure that every test conducted in our lab delivers comprehensive insights into the endurance and operational capabilities of products, setting a new benchmark for quality in acceleration testing.

Centrifuge Testing for High-Performance Products

At DES, centrifuge testing is vital for validating the structural integrity and resilience of components destined for critical applications. Our centrifuge is equipped with advanced slip ring lines that allow for real-time monitoring of power and data transmission, enabling precise assessments of product behavior under significant G-forces.


Our centrifuge facility plays a critical role in preemptively identifying potential failures, thereby enhancing product durability before they enter strenuous real-world applications. This proactive approach to product testing helps our clients save on costly post-deployment repairs and replacements, ensuring that their products are both robust and reliable from the outset.

Call us today to schedule your product for our advanced centrifuge testing and ensure its readiness for any operational challenge.

Acceleration Testing for Military and Aerospace Applications

Our centrifuge services are indispensable for products that must meet the highest standards of reliability and safety. By replicating the intense forces encountered during military operations and space missions, we provide essential data that helps refine product designs to withstand any challenge they might face in actual deployment.

Discover Our Lab Centrifuge’s Advanced Features

Watch our latest video to see the DES lab centrifuge in action, where it tests the limits of aerospace and military products with unparalleled precision. This demonstration shows the smooth operation of our centrifuge while achieving significant G Forces.

Contact us for a deeper understanding of how our centrifuge testing can benefit your product development

Share This:

MIL-STD-810 Temperature Shock Testing

Method 503 in MIL-STD-810 covers procedures for temperature shock or thermal shock testing.  Temperature shock testing (as defined in MIL-STD-810H) is a rapid change in air temperature greater than 10°C (18°F) per minute.  Temperature shock testing is used to determine if products can withstand sudden changes in the surrounding temperature environment without experiencing physical damage or deterioration in performance.   The latest revision is Method 503.7 from MIL-STD-810H.

Some of the Effects of Temperature Shock Environments are:

  • Shattering of glass and optical material.
  • Binding or slackening of moving parts.
  • Differential contraction or expansion rates or induced strain rates of dissimilar materials.
  • Deformation or fracture of components.
  • Cracking of surface coatings.
  • Leaking of sealed compartments.
  • Failure of insulation protection.
  • Changes in electrical and electronic components.
  • Electronic or mechanical failures due to frost formation.

Method 503 Has One Procedure with Four Variations:

  1. Procedure I-A – One-way Shock(s) from Constant Extreme Temperature
    This procedure is for material that is only rarely exposed to thermal shock in one direction.  At least one shock is performed from low to high temperature, or vice versa. 
  2. Procedure I-B – Single Cycle Shock from Constant Extreme Temperature.  For items that are exposed to only one thermal shock cycle (one in each direction).  One shock is performed from low-to-high temperature (or vice versa) and then one shock in the opposite direction.
  3. Procedure I-C – Multi-Cycle Shocks from Constant Extreme Temperature.  A minimum of three shocks are performed at each condition, i.e., three transfers from cold to hot, three transfers from hot to cold, and a stabilization period after each transfer. 
  4. Procedure I-D – Shocks to or from Controlled Ambient Temperature.  Procedure I-D follows the durations of Procedures I-A to I-C, except all shocks are to and/or from controlled ambient temperatures. 

Test levels for MIL-STD-810 Temperature Shock Testing 

Consider the following typical conditions from MIL-STD-810H:

  1. Aircraft flight exposure. For materiel exposed to desert or tropical ground heat with possible direct solar heating, then, immediately afterwards, exposed to the extreme low temperatures associated with high altitude.  The item could be subjected to multiple thermal shocks occurring in multiple missions. 
  2. Air delivery – desert. For products that are delivered over desert terrain from unheated, high altitude aircraft, then exposed to hot ambient air temperature (no solar loading).
  3. Ground transfer – ambient to or from either cold regions or desert. For items that move from a controlled ambient indoor environment or enclosure to a cold region or desert environment.

For MIL-STD-810 temperature shock testing, the transfer time between the temperatures should be within one minute.  The test sample is soaked for as long as necessary to ensure a uniform temperature throughout at least its outer portions.  If the Life Cycle Environmental Profile indicates a duration less than that required to achieve stabilization, this duration should be used.  If the critical point of interest is near the surface of the item, a shorter duration may apply rather than complete stabilization of the item.

H4: Choosing DES for MIL-STD-810 Temperature Shock Testing

When it comes to MIL-STD-810 Temperature Shock Testing, selecting the right laboratory is crucial for accurate and reliable results. DES stands out for several reasons:

  • DES has run numerous MIL-STD-810 Method 503.7 Temperature Shock tests for many military manufacturers
  • DES’s lab is A2LA accredited to MIL-STD-810, Method 503 Temperature Shock Testing
  • DES has multiple chambers capable of performing MIL-STD-810 Temperature Shock compliance testing

Contact us today to discuss your MIL-STD-810 testing with one of our engineers. 

Share This:

MIL-STD-810 Low Temperature Testing

MIL-STD 810, Method 502 Low Temperature Testing is used to evaluate the effects of low temperatures on cold storage, operation, and manipulation.  Method 502 is applicable for testing products that will be exposed to cold temperatures during their life cycle.  The latest revision is Method 502.7 from MIL-STD-810H.

MIL-STD-810 low temperature testing is not intended to simulate a high altitude, low temperature environment associated with an unpressurized aircraft at altitude.  However, it may be used in combination with Method 500.6 to simulate a high altitude, low temperature environment. 

Some of the Effects of Low Temperature Environments are:

  • Hardening and embrittlement of materials.
  • Binding of parts from differential contraction of dissimilar materials.
  • Loss of lubrication and lubricant flow due to increased viscosity.
  • Changes in electronic components (resistors, capacitors, etc.).
  • Changes in performance of transformers and electromechanical components.
  • Stiffening of shock mounts.
  • Cracking, change in impact strength, and reduced strength.
  • Effects due to condensation and freezing of water in or on the materiel.

Method 502 Has Three Procedures Starting with Low Temperature Storage:

  1. Procedure I – Storage.  Procedure I is used to evaluate products that are stored at Low temperatures.  After the Low temperature storage test is completed, an operational test at ambient conditions is performed. 
  2. Procedure II – Operation.  Procedure II is used to determine how well an item will operate in low temperature environments.  Operation during this procedure assumes minimum contact by personnel.
  3. Procedure III – Manipulation.  Manipulation is used to investigate the ease with which the materiel can be assembled, operated, and disassembled by personnel wearing heavy, cold-weather clothing. In addition, this could also include maintenance procedures. 

Low Temperature Test Parameters and Procedures Under MIL-STD-810 

First, identify the Low temperature test parameters and applicable procedures. DES can help determine the appropriate low temperature test conditions based on the equipment’s intended use.  Consider the following cold temperatures in various world-wide locations from Table 502.7-I. (MIL-STD-810H):

Design TypeLocationAmbient Air Temperature oC(oF)Induced Environment Temperature
(Storage & Transit)
oC(oF)
Basic Cold (C1)Most of Europe; Northern contiguous US; Costal Canada; High-Latitude coasts (e.g., southern coast of Alaska); High elevations in lower latitudes-21 to -32
(-5 to -25)
-25 to -33
(-13 to -28)
Cold (C2)Canada, Alaska (excluding the interior); Northern Scandinavia; Northern Asia (some areas), High Elevations (Northern and Southern Hemispheres); Alps; Himalayas; Andes-37 to -46
(-35 to -50)
-37 to -46
(-35 to -50)
Severe Cold (C3)Interior of Alaska; Yukon (Canada); Interior of Northern Canadian Islands; Greenland ice cap; Northern Asia-51
(-60)
-51
(-60)
Source: Table 502.7-I. (MIL-STD-810H)

The recommended test duration from MIL-STD-810H is four hours after stabilization for nonhazardous or non-safety-related (non-life-support type) material.  Munitions, rubber and plastics may continue to deteriorate following low temperature stabilization.  For these items, a minimum duration of 72 hours following temperature stabilization is recommended.  For restrained glass, ceramics, and glass-type products (such as those used in optical systems, laser systems, and electronic systems) a minimum storage period of 24 hours following temperature stabilization is recommended. 

Advantages of MIL-STD-810H Low Temperature Testing with DES:

DES excels in MIL-STD-810H Low Temperature Testing. With our lab’s accreditation and equipped with advanced temperature chambers, we ensure your equipment meets the cold-weather performance standards required by MIL-STD-810H.  Some of the reasons that DES is trusted by many companies for MIL-STD-810H Low Temperature Testing are:

  • DES has extensive experience running MIL-STD-810 Method 502.7 Low Temperature tests
  • DES’s lab is A2LA accredited to MIL-STD-810, Method 502 Low Temperature Testing
  • DES is trusted by many military manufacturers to perform their testing
  • DES has numerous temperature chambers capable of performing MIL-STD-810 Low temperature compliance testing

Contact us today to discuss testing your product in our MIL-STD-810 accredited Test Laboratory. 

Share This:

MIL-STD-810 High Temperature Testing

MIL-STD 810, Method 501 High Temperature Testing is used to evaluate the effects of high temperature conditions on performance, materials, and integrity.  Method 501 is applicable for temperature testing products that are deployed in areas where temperatures (ambient or induced) are higher than standard ambient.  Note, the latest revision of this method is 501.7 from MIL-STD-810H.

Method 501 is limited to evaluating the effects of relatively short-term (months, as opposed to years), even distributions of heat throughout the test item. This method is not typically practical for evaluating materials where solar radiation produces thermal gradients or photochemical effects.  Method 505 is used to test the effects of solar radiation.  It is also not practical to evaluate degradation that occurs from continuous long-term exposure to high temperatures where synergetic effects may be involved.

The following are typical failures that could occur from products used in high temperature environments.

  • Parts bind from the differential expansion of dissimilar materials.
  • Lubricants become less viscous; joints lose lubrication by the outward flow of lubricants.
  • Materials change in dimension.
  • Packing, gaskets, seals, bearings, and shafts become distorted, bind, and fail causing mechanical failures.
  • Gaskets display permanent sets.
  • Closure and sealing strips deteriorate.
  • Fixed-resistance resistors change in values.
  • Electronic circuit stability varies with differences in temperature gradients and differential expansion of dissimilar materials.
  • Transformers and electromechanical components overheat.
  • Operating/release margins of relays and magnetic or thermally activated devices alter.
  • Shortened operating lifetimes.
  • High pressures are created within sealed cases (batteries, etc.).
  • Discoloration, cracking, or crazing of organic materials.
  • Out-gassing of composite materials or coatings.
  • Failure of adhesives.

MIL-STD-810 Method 501 Tests: High Temperature Procedures

  1. Procedure I – Storage.  Procedure I is for testing products that are stored at high temperatures.  After the high temperature storage test is completed, an operational test at ambient conditions is performed.  Procedure I can be either a cyclic temperature test or a constant temperature test. 
  2. Procedure II – Operation.  Procedure II is used to investigate how high temperatures could affect the performance of items while they are operating.  Temperature Procedure II can be performed as either a cyclic temperature test or a constant temperature test. 
  3. Procedure III – Tactical-Standby to Operational.  This temperature procedure evaluates the material’s performance at normal operating temperatures after being presoaked at high non-operational temperatures.  An example of Procedure III is a product that is stored in an enclosed environment that develops high internal temperatures before being removed and then operated in a relatively short period of time.

What is the procedure for MIL-STD-810 High Temperature Testing? 

First, identify the high temperature levels, test conditions, and applicable procedures. DES can help determine the appropriate temperature ramp rates and durations of the tests based on the equipment’s intended use and the operating environmental conditions.  Consider the following climatic temperatures from Table 501.7-I. (MIL-STD-810H):

Design TypeLocationAmbient Air oC (oF)Induced2 oC (oF)
Basic Hot (A2)Many parts of the world, extending outward from the hot dry category of southwestern United States, northwestern Mexico, central and western Australia, Saharan Africa, South America, Southern Spain, and southwest and south central Asia.30 – 43

(86 – 11)
30 – 63

(86 – 145)
Hot Dry (A1)Southwest and south central Asia, southwestern United States, Saharan Africa, central and western Australia, and northwestern Mexico.32 – 49

(90 – 120)
33 – 71

(91 – 160)
Table 501.7-I from MIL-STD-810H

Next, determine whether a constant temperature test or a cyclic temperature test is appropriate.  Constant temperature testing is used only for items situated near heat-producing equipment or when it is necessary to verify the operation of an item at a specified constant temperature.  The duration for constant temperature test temperature is at least two hours following test specimen stabilization.

For cyclic exposure, there are two 24-hour cyclic profiles contained in Tables 501.7-II and 501.7-III.  The number of cycles for the Procedure I storage test is a minimum of seven to coincide with the one percent frequency of occurrence of the hours of extreme temperatures during the most severe month in an average year at the most severe location.   The minimum number of cycles for the Procedure II operational testing is three. This number is normally sufficient for the test item to reach its maximum response temperature.

You can trust the DES MIL-STD-810 High Temperature Testing lab

Advantages with DES : 

  • DES is A2LA accredited to MIL-STD-810, Method 501 High Temperature Testing
  • DES has extensive experience running MIL-STD-810 Method 501.7 high temperature Tests
  • DES has multiple temperature chambers capable of performing MIL-STD-810 high temperature compliance testing

Contact us today to to discuss testing your product in our MIL-STD-810 accredited Test Laboratory. 

Share This:

MIL-STD-810 Low Pressure (Altitude) Testing

In the demanding realms of aerospace and defense, ensuring that products can withstand the rigors of high-altitude environments is paramount. MIL-STD 810 is a Department of Defense Test Standard for environmental engineering considerations and laboratory tests.  Method 500 in MIL-STD-810 defines procedures for low-pressure (altitude) testing.  The latest revision of this method is 500.6 from MIL-STD-810H.

Altitude Testing Services at Delserro Engineering Solutions

At Delserro Engineering Solutions, our altitude testing services are designed to meet the rigorous demands of the aerospace and defense industries. By employing the comprehensive procedures outlined in MIL-STD-810H Method 500.6, we ensure that every product undergoes thorough low pressure testing under simulated high-altitude conditions. The altitude test chambers at Delserro Engineering Solutions (DES) can meet the requirements of MIL-STD-810H (and previous revisions) accurately ensuring that products are not just compliant but are primed for operational excellence.

MIL-STD-810 altitude testing services are tailored to products that:

  1. Operate or are stored at significant elevations.
  2. Experience pressurized or unpressurized conditions in aircraft.
  3. Could undergo rapid or explosive decompression.
  4. Are externally mounted on aircraft and exposed to extreme conditions.

Method 500 is not intended for items that are installed or operated in space vehicles, aircraft, or missiles that fly at altitudes above 21,300 m (70,000 ft). 

The following are typical failures that could occur from products used in a high altitude (low pressure) environment:

  1. Leakage of gases or fluids from gasket-sealed enclosures
  2. Deformation, rupture, or explosion of sealed containers
  3. Change in physical and chemical properties of low-density materials
  4. Overheating of materiel due to reduced heat transfer
  5. Evaporation of lubricants
  6. Erratic starting and operation of engines
  7. Failure of hermetic seals
  8. Erratic operation or malfunction of materiel resulting from arcing or corona

MIL-STD-810 Method 500.6 Insights for Low Pressure Testing

MIL-STD-810 Method 500.6 has four procedures:

  1. Procedure I – Storage/Air Transport. Procedure I is for testing material that is transported or stored at high ground elevations or transported by air in its shipping/storage configuration.
  2. Procedure II – Operation/Air Carriage. Procedure II is used to test the performance of products operated at high altitudes.  It may be preceded by Procedure I.
  3. Procedure III – Rapid Decompression.  Procedure III is for determining if a rapid decrease in cabin pressure will cause a failure or malfunction that would endanger nearby personnel the ground vehicle or the aircraft in which it is being transported.
  4. Procedure IV – Explosive Decompression. Procedure IV is similar to Procedure III except that it involves an instantaneous decrease in pressure.

How is MIL-STD-810 Low Pressure Testing performed?  First, it is necessary to determine the test parameters such as test altitude (pressure) and temperature, rate of change of pressure (and temperature if appropriate), duration of exposure, and test item configuration based upon the Life Cycle Environmental Profile.  Once the parameters are defined, low pressure testing is performed by placing the specimen in a specialized chamber that simulates altitude by controlling pressure and temperature.  Upon completion of the altitude test, DES will promptly deliver a detailed test report that includes the customer’s name and address, the test dates, a summary of the test procedure, equipment & measuring system calibration information, plots of altitude and temperature, test observations & results, color pictures of the altitude test setup and color pictures of any failures. 

Why Choose DES for MIL-STD-810 Low Pressure (Altitude) Testing

  • A2LA Accreditation: Our laboratory’s accreditation is a testament to our commitment to quality and excellence in environmental testing.  DES is A2LA accredited to MIL-STD-810 Low Pressure (Altitude) Testing.
  • Trusted by Industry Leaders: Our state-of-the-art testing facilities, experienced engineering team, and track record of success has made us the number one choice of top defense contractors.
  • Advanced Testing Capabilities: With equipment capable of simulating altitudes from below sea level to as high as 1,000,000 feet and temperatures ranging from -75°C to +150°C, we can accommodate a wide variety of testing requirements.

Contact us today to discuss how our altitude testing services can contribute to the success and reliability of your next project.

Share This:

Leveraging Highly Accelerated Life Testing for Aerospace Products

The margin for error is virtually nonexistent in the rapidly evolving aerospace sector. Aerospace products, from commercial satellites to advanced aircraft systems, must meet the highest standards of reliability and durability. This is where Highly Accelerated Life Testing (HALT) comes into play, offering a transformative approach to testing and ensuring the robustness of aerospace components before they even leave the ground.

HALT is a rigorous methodology designed to push aerospace products beyond their operational limits, identifying potential weaknesses and failure modes that traditional testing methods might miss. By subjecting aerospace products to extreme stress conditions—far beyond what they would encounter in their normal life span—HALT provides invaluable insights into the inherent durability and reliability of aerospace components.

The beauty of HALT lies in its ability to reveal the unknown. It accelerates the aging process, simulating years of wear and tear in a fraction of the time, thereby uncovering latent defects and vulnerabilities. This preemptive identification allows for critical design modifications and enhancements, significantly reducing the risk of costly failures and recalls post-launch.

For aerospace manufacturers, the implications of HALT are profound. It signifies a commitment to excellence and represents a strategic investment in the product’s lifecycle. By integrating HALT into the development process, aerospace companies can confidently navigate the complex landscape of product reliability, ensuring that their products are not just fit for purpose but are built to last.

Aerospace Testing Laboratory: Advancing Product Reliability with HALT

In the quest for unparalleled aerospace product reliability, our aerospace testing laboratory offers organizations the use of Highly Accelerated Life Testing (HALT) methodologies. HALT represents a commitment to excellence and a testament to our dedication to advancing aerospace technology.

The HALT process within our aerospace testing laboratory involves a series of accelerated stress tests, including rapid temperature cycling, 6 degrees of freedom random vibration tests at varying frequencies, and combined environment tests. These tests are designed to expose products to conditions far more severe than they would ever encounter in service. By doing so, Delserro Engineering Solutions can identify potential failure points and address them long before they become real-world issues.

Key Advantages of HALT in Our Aerospace Testing Laboratory:

  • Early Detection of Design Flaws: By applying stressors that exceed the normal operational limits, HALT helps uncover hidden weaknesses in product designs.
  • Cost-Efficiency: Identifying and rectifying potential failures before products hit the market significantly reduces the risk of costly recalls and brand damage.
  • Reduced Time to Market: Accelerated testing means faster validation of product robustness, enabling quicker transitions from design to production.
  • Customized Testing Strategies: Our aerospace testing laboratory tailors HALT protocols to match the specific requirements and challenges of each aerospace product.

Through the strategic application of HALT, our aerospace testing laboratory supports the industry’s continuous drive toward innovation and reliability. We help our clients achieve the highest standards of performance and dependability in their aerospace endeavors.

Embrace the future of aerospace product testing with us. Discover how our HALT methodologies can elevate your products’ reliability to new heights.

The Impact of HALT on Aerospace Testing and Product Integrity


Highly Accelerated Life Testing (HALT) has significantly influenced aerospace testing practices, leading to more resilient and reliable aerospace products. HALT extends beyond traditional testing methods by focusing on identifying potential failure modes early in the product development cycle.

The practical benefits of integrating HALT into aerospace testing include:

  • Early Detection and Rectification of Flaws: By pushing components beyond their operational limits, HALT helps uncover hidden weaknesses in the design and materials, allowing for early modifications.
  • Comprehensive Stress Testing: HALT subjects aerospace products to a variety of stressors, including extreme temperatures and vibrations, to ensure they can withstand a broad range of operational environments.
  • Support for Innovation: The rigorous demands of HALT encourage the exploration of new materials, designs, and manufacturing techniques, driving innovation in aerospace technology.
  • Risk Mitigation: Identifying potential issues before products reach the market minimizes the risk of costly recalls and enhances the overall safety of aerospace missions.
  • Streamlined Product Development: HALT can reduce the time required for product testing and validation.
  • Stakeholder Confidence: Demonstrating a commitment to thorough testing and product reliability helps build trust among manufacturers, regulatory agencies, and users.

HALT’s role in aerospace testing is to provide a practical, systematic approach to improving product reliability and integrity. It’s about making informed decisions based on comprehensive data. Through the application of HALT, the aerospace industry can achieve a balance between innovation and reliability.

Improve Your Aerospace Products with HALT

Adopting Highly Accelerated Life Testing (HALT) for your aerospace products is a strategic move toward securing a competitive edge in the aerospace industry. By incorporating HALT into your product development process, you’re committing to the highest standards of safety, durability, and performance.

Our aerospace testing laboratory is equipped with state-of-the-art HALT technology and a team of experienced engineers dedicated to helping you achieve excellence in product development. Our aerospace testing laboratory’s ISO/IEC 17025 and ISTA accreditation are a testament to our capability to execute tests that are both precise and reliable. We understand the unique challenges of the aerospace sector and are committed to providing tailored testing solutions that meet your specific needs.

In the dynamic field of aerospace, staying ahead means continually pushing the boundaries of what’s possible. Partner with Delserro Engineering Solutions to harness the power of HALT and take your aerospace products to new heights.

Contact us today to learn more about how we can support your journey toward unparalleled reliability and success in the aerospace industry.

Share This:

Medical Device Industry: Producing Reliable Products

medical device industry showing stethoscope and other devices

In the fast-evolving medical device industry, the pathway to market success is marked by stringent standards. Delserro Engineering Solutions (DES) plays a pivotal role in this journey, offering expert testing services for both medical devices and their packaging. Recognizing that each product—from intricate surgical instruments to complex diagnostic machinery—requires rigorous scrutiny, DES employs cutting-edge environmental, vibration, HALT, and shock testing in its state-of-the-art facilities.

The comprehensive range of tests at DES is designed to address the specific challenges faced by medical devices in real-world conditions. By simulating various environmental factors and stressors, DES ensures that both the device and its packaging maintain integrity and functionality throughout their lifecycle. This attention to detail is crucial in the medical device industry where precision is paramount, and the smallest oversight can have significant consequences.

Our team delves into the nuances of each project, partnering with manufacturers to understand their unique needs and challenges. This collaborative approach allows for customized testing solutions that cater to the diverse requirements of the medical device sector.

Medical Device Testing: Meeting Rigorous Standards with DES

The field of medical device testing necessitates strict adherence to a variety of industry standards to ensure compliance. At Delserro Engineering Solutions (DES), we pride ourselves on aligning our testing services with these critical standards, assuring that medical device packaging meets the highest benchmarks of quality and reliability.

  1. ISTA Compliance for Transportation Durability: As a certified testing laboratory, we conduct packaging tests that comply with International Safe Transit Association (ISTA) standards. These tests simulate the stress that packaging undergoes during transportation, ensuring that it can protect medical devices from damage due to shock, vibration, and other environmental factors.
  2. ASTM Standards for Material Quality: Adhering to ASTM D7386 and other ASTM standards, we evaluate the material quality of packaging, assessing its durability and resilience under various conditions. These tests are crucial for determining if the packaging can maintain the sterility and integrity of medical devices.
  3. ISO/IEC 17025 Accredited Testing: Our ISO/IEC 17025 accreditation signifies our technical competence in conducting standardized tests. This includes ensuring that medical device packaging meets specific environmental testing requirements crucial for maintaining product reliability throughout its lifecycle.
  4. MIL-STD Compliance for Military-Grade Assurance: For products that require a higher level of robustness, such as those used in military applications, we ensure compliance with Military Standards like MIL-STD-810 and MIL-STD-202. This ensures that products can withstand extreme environmental conditions and rough handling.
  5. Customized Testing Protocols: Beyond standard compliance, we offer customized testing solutions tailored to unique client specifications. Whether it’s assessing the resilience of packaging or devices under specific temperature conditions or evaluating its performance under unique mechanical stresses, our state-of-the-art facilities are equipped to handle diverse testing needs.

Navigating Challenges in Medical Device Package Testing

The journey from conception to market for medical devices is fraught with challenges, particularly when it comes to packaging. At Delserro Engineering Solutions (DES), we understand that the package is a crucial component that ensures device safety and efficacy during transit and storage.

With the medical device industry facing ever-tightening regulations, manufacturers must ensure their packaging can withstand a range of environmental stresses. DES’s medical device package testing services are designed to address these exacting standards, from simulating transportation conditions to mimicking the rigors of handling and storage.

Moreover, DES’s commitment to staying ahead in an evolving industry landscape means continuously updating our medical device package testing processes in line with the latest regulations and standards. Our laboratory’s ISO/IEC 17025 and ISTA accreditation are a testament to our capability to execute tests that are both precise and reliable. We engage with the latest industry practices, ensuring that our clients’ medical device packaging is robust, compliant, and above all, safe for the end-user.

Recognizing that off-the-shelf solutions do not fit all, our engineers work closely with clients to develop specialized medical device package testing plans that match the unique needs of their products. Whether it’s fine-tuning temperature cycles to match specific geographic journeys or tailoring shock tests for delicate components, DES ensures that every aspect of packaging is scrutinized and optimized for peak performance. This meticulous attention to detail ensures that when a medical device reaches its destination, it does so with its integrity unblemished and its functionality assured.

DES embraces the challenges of medical device package testing with a blend of accredited procedures, advanced technology, and customized service. By doing so, we ensure that our clients’ products are not only compliant but exemplify the highest standards of the medical device industry. Contact us to learn more about how we can address the specific testing needs for your medical device packaging.

Proven Expertise in the Medical Device Industry at DES

At Delserro Engineering Solutions (DES), our expertise in the medical device industry is more than just a claim—it’s a commitment. With over three decades of experience, DES has established itself as a leader in providing comprehensive testing solutions for both medical devices and their packaging. Our deep understanding of medical device industry standards positions us uniquely to help our clients navigate the complexities of product testing and compliance.

Our team of skilled engineers and technicians is dedicated to delivering results that surpass expectations. At DES, we understand that the medical device industry is rapidly evolving, and staying ahead means being equipped to adapt to new challenges. We offer personalized service, working closely with our clients to understand their specific needs and providing tailored solutions that align with their goals. This partnership approach has made us a trusted name among industry giants.

In the medical device industry, where precision, quality, and reliability are non-negotiable, DES stands as a beacon of excellence. We invite you to experience the DES difference—where quality testing leads to quality products.

Contact us today to learn how our expertise can enhance the reliability and market success of your medical devices.

Share This:

Vibration Testing Lab for Demanding Military Applications

Vibration Testing for military compliance is a crucial aspect for products aiming to serve in military applications. To ensure that these products can endure a severe military environment, they must undergo rigorous testing at a state-of-the-art vibration testing lab. This process involves defining the environmental life cycle that the product will encounter and then developing and executing a qualification test plan based on specific military standards. Completing these tests and documenting them in a detailed report is integral to achieving military compliance.

Why Perform Military Compliance Vibration Testing?

Military compliance vibration testing is especially crucial for military products integrated into complex and costly systems, where failure can lead to significant consequences. The principle reasons for executing this testing include the following:

  1. Ruggedizing Your Product:  Testing your product to a military standard vibration profile will ensure that it can withstand harsh vibration exposures that it would experience throughout its life cycle.
  2. Evaluating Performance: Military compliance vibration testing ensures that items will perform properly under harsh vibration conditions.  If your component does not function properly, it could cause a failure of a complicated system. 
  3. Reducing Maintenance and Preventing Field Failures:  A robust product will have less or no field failures, reduce downtime and maintenance which is critical for military applications. 

Focusing specifically on vibration testing for military compliance, this article delves into various military standards that are vital in evaluating a product’s durability and ruggedness. These include MIL-STD-167, MIL-STD-202, MIL-STD-750, MIL-STD-810, and MIL-STD-883, each with their specific testing methods for a range of environmental conditions including sinusoidal and random vibration testing.

  • MIL-STD-167 Department of Defense Test Method Standard – Mechanical Vibrations of Shipboard Equipment
  • MIL-STD-202 Department of Defense Test Method Standard for Electronic and Electrical Component Parts
  • MIL-STD-750 Test Methods for Semiconductor Devices
  • MIL-STD-810 Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests
  • MIL-STD-883 Department of Defense Test Method Standard for Microcircuits

MIL-STD-167 applies to equipment installed on Navy ships with conventionally shafted propulsion.  MIL-STD-167-1 covers mechanical vibrations caused by unbalanced rotating components of Naval shipboard equipment.  MIL-STD-167-2 is for mechanical vibrations from reciprocating machinery and lateral, longitudinal vibrations of propulsion systems and shafting. 

MIL-STD-202 establishes uniform methods for testing electronic and electrical component parts.  MIL-STD-202 defines component parts to include capacitors, resistors, switches, relays, transformers, inductors, etc.  This standard is intended to apply only to small component parts, weighing less than 300 pounds or having a root mean square test voltage up to 50,000 volts. 

MIL-STD-750 is intended to apply only to testing semiconductor devices.  Semiconductor devices include such items as transistors, diodes, voltage regulators, rectifiers, tunnel diodes, and other related parts.

Contact DES, where precision meets passion for excellence.

MIL Standard 810 Testing: The DES Commitment

MIL-STD-810, known for its stringent requirements, is crucial for products intended for military use, and at DES, we ensure that these products meet and exceed these rigorous standards.

Our approach to MIL Standard 810 testing is comprehensive and meticulous. We understand that each product has its unique set of challenges and requirements. Therefore, our testing process is not just about meeting the basic compliance standards; it’s about thoroughly understanding the product’s lifecycle and the environmental stresses it will endure.

Our state-of-the-art facilities are equipped to conduct the methods under MIL-STD-810H, ensuring that we cover a wide range of environmental conditions. From high and low temperatures to shock and vibration, our tests are designed to mimic the harsh conditions that products will face in real-world military environments. This thorough testing not only ensures compliance but also aids in enhancing the product’s design and durability.

Choosing DES for MIL Standard 810 testing and all other military compliance testing means partnering with a team that values precision, quality, and customer satisfaction above all else. Our experience and expertise in this field make us a trusted partner for numerous manufacturers, from small component producers to large-scale military equipment manufacturers.

Contact Delserro Engineering Solutions today to learn more about our MIL Standard 810 testing services and how we can assist in bringing your products to the highest standards of military readiness and reliability.

MIL Standard 883: Advanced Testing for Microelectronics

As mentioned in the previous list, MIL-STD-883 is critical for the testing of microelectronics used in military applications. This Department of Defense Test Method Standard for Microcircuits is essential for ensuring that microelectronic devices can withstand the demanding conditions of military use. MIL-STD-883 encompasses a comprehensive suite of test procedures tailored to assess the robustness and reliability of various microelectronic devices, including monolithic, multichip, film, and hybrid microcircuits, as well as microcircuit arrays and their constituent elements.

The standard plays a pivotal role in validating the endurance of microelectronics in extreme environmental conditions. This includes evaluating their performance under conditions of extreme temperature, vibration, and other stress factors that are commonly encountered in military environments.

For manufacturers and designers of microelectronic devices, adhering to MIL-STD-883 is not just about compliance; it’s about guaranteeing the highest levels of performance and reliability of their products in some of the most challenging conditions. This is especially crucial given the increasing complexity and miniaturization of electronic components in military hardware.

Delserro Engineering Solutions (DES) provides comprehensive testing services to ensure compliance with MIL-STD-883. Our advanced testing capabilities help manufacturers navigate the complexities of MIL-STD-883, offering the assurance that their microelectronics meet all necessary military specifications. With our state-of-the-art facilities and technical expertise, we are equipped to handle the rigorous testing requirements of MIL-STD-883, delivering results that manufacturers can trust for their high-performance microelectronic products.

Vibration Testing Lab: Cutting-Edge Solutions by DES

At Delserro Engineering Solutions (DES), our state-of-the-art vibration testing lab is equipped to provide comprehensive solutions for military compliance. Understanding the criticality of these tests for military applications, we offer advanced testing procedures that replicate the exact conditions products will face in the field.

Moreover, DES recognizes the importance of customizing vibration testing to meet the specific requirements of each product and its intended use. Whether it’s testing for land and sea vehicles, aircraft, helicopters, or ground transport, we tailor our vibration testing procedures to ensure the most relevant and rigorous evaluation.

Our expertise extends beyond just executing standard tests. We work closely with our clients to develop comprehensive test plans that not only meet the required standards but also provide valuable insights into product performance and potential areas for enhancement. This approach helps in identifying and rectifying deficiencies early in the design process, saving time and costs, and ultimately leading to a more robust and reliable product.

With DES’s vibration testing lab, clients can expect not just testing, but a partnership that focuses on enhancing the quality and durability of their products. Reach out to us to discuss how we can assist in fulfilling your military vibration testing requirements with our cutting-edge solutions and expert guidance.

Contact DES today to discuss your vibration testing lab requirements.

If you want to learn more about vibration testing, please read these related blog articles:

MIL-STD-810 Vibration Testing Overview

MIL-STD-810: Vibration Testing Category 4 – Truck/Trailer – Secured Cargo

MIL-STD-810: Vibration Testing Category 9 – Aircraft – Helicopter

MIL-STD-810: Vibration Testing Category 7 – Aircraft – Jet

MIL-STD-810: Vibration Testing Category 8 – Aircraft – Propeller

MIL-STD-810: Vibration Testing Category 12 – Fixed Wing Jet Aircraft

MIL-STD-810: Vibration Testing Category 15 – Aircraft Stores

MIL-STD-810: Vibration Testing Category 20 – Ground Vehicles – Ground Mobile

MIL-STD-810: Vibration Testing Category 24 – Minimum Integrity Tests (MIT)

Share This:

DES Testing Laboratory Achieves ISTA Certification

testing laboratory DES certification

At Delserro Engineering Solutions (DES), our commitment to ensuring the highest standards of product reliability has reached new heights with our recent achievement: ISTA® certification. We are thrilled to announce that DES has been certified by the prestigious International Safe Transit Association (ISTA) as a qualified Transport Testing Laboratory. This certification is not merely a recognition; it is a testament to our unwavering dedication to excellence and precision in product testing.

Certification by ISTA ensures that a testing laboratory possesses not only the proper equipment but also the advanced capabilities required to conduct ISTA package performance testing. ISTA testing, with its focus on subjecting shipping containers to a series of rigorous hazards including shock, vibration, and various environmental conditions, mirrors the challenges products face throughout their distribution cycle. Achieving this certification demonstrates DES’s commitment to comprehensive testing methodologies, evaluating the robustness of products under real-world shipping conditions.

Secure your competitive advantage with DES’s ISTA-certified testing and watch your market trust and product integrity flourish.

ISTA Certification: Demonstrating Our Commitment to Quality Assurance

The achievement of ISTA certification is an unequivocal message to our clients and partners. It underscores our commitment to comprehensive testing methodologies that ensure the robustness of products under real-world shipping conditions. It reassures you that at DES, we do not compromise when it comes to the reliability and quality of your products.

Our dedication to quality does not stop at ISTA certification alone. DES is also accredited to ISO/IEC 17025 by the American Association for Laboratory Accreditation (A2LA). This dual recognition serves as a beacon of our strong technical competence and world-class equipment capabilities. We adhere to the highest industry standards, ensuring that every test conducted in our laboratory is reliable, accurate, and of unparalleled quality.

Our ISTA certification and A2LA accreditation offer our clients a unique advantage – the ability to evaluate both the reliability of their products and the performance of their package design under one roof. DES understands that a product’s journey doesn’t end at its reliability; it extends to its safe and consistent transportation to its final destination.

Your success begins with the right testing partner – choose DES.

Accredited Testing Laboratory: Ensuring Unparalleled Precision

At Delserro Engineering Solutions (DES), our distinction as an accredited testing laboratory goes beyond mere recognition; it embodies our unwavering commitment to ensuring unparalleled precision in every test we conduct. Being an accredited testing laboratory means adhering to the highest industry standards and consistently delivering results that meet the most rigorous quality criteria.

As an accredited testing laboratory, our suite of testing services is both comprehensive and customized to cater to the diverse needs of our clients. Whether it’s Accelerated Product Life Cycle Testing, Custom Test & Measurement, Dynamics Testing, Environmental & Climatic Testing, Package Testing, Production Screening, or Reliability Testing, we can design and implement specialized testing setups that cater to your unique product specifications.

In the competitive landscape of product development, precision matters. It is the key differentiator between products that merely make it to the market and products that dominate the market. At DES, our accreditation as a testing laboratory is your assurance of precision and quality. Partner with us, and let our accredited status enhance your products’ reliability and market success.

Contact DES, where precision meets passion for excellence.

The Essence of Excellence: DES as Your Trusted Testing Laboratory

Delserro Engineering Solutions (DES) is your trusted testing laboratory, dedicated to upholding excellence in product qualification and reliability testing. Our journey in this field spans over three decades, during which we have become a name synonymous with precision, reliability, and unwavering commitment to quality assurance.

Our legacy as a testing laboratory reflects not just our longevity but also the immense expertise we have amassed over the years. We have successfully completed testing projects for esteemed clients including Adidas, Crayola, Medtronic, Rolls Royce, Boeing, Lockheed Martin, and the U.S. Army. This extensive experience allows us to offer insights and expertise that are truly unparalleled in the industry.

Partner with us and experience the difference that our legacy of excellence can make for your products.

Share This:

Electrical Connector Testing: Ensuring Reliability in Vibrating Environments

Electrical connectors are ubiquitous components in the world of electronics, serving as the vital links that enable seamless communication and power transmission within electronic systems. In today’s rapidly advancing technological landscape, ensuring the integrity and reliability of electrical connectors is of paramount importance. Some are exposed to harsh vibration environments such as automotive, aerospace, military, missiles, and rockets. 

A failure or intermittent connection can cause a fault, malfunction, or a system shutdown in a complicated electronic system.  These demanding applications leave no room for error, as even a minor fault or intermittent connection can lead to catastrophic consequences, including system failures, malfunctions, or complete shutdowns. Electrical connector testing includes shock testing, mechanical load testing, and vibration testing, among others.

In this article, we will review the methodologies and standards for effective electrical connector testing in vibrating environments.

Mixed Mode, Random and Sinusoidal Vibration Testing of Electrical Connectors

Electrical connector vibration tests mimic real-world scenarios. Understanding how connectors perform under these complex conditions is crucial for designing robust systems.

How is Electrical Connector Vibration Testing performed?

The specific tests performed on electrical connectors include random, mixed mode, and sinusoidal vibration testing. (See below for links to other blog articles that explain more about the types of vibrations.)  The test equipment consists of an electrodynamic shaker that has an armature or head which produces the required excitations.  A computerized controller sends the precise vibration signals to an amplifier which boosts the signals to drive the shaker head. 

Accelerometers are used to measure the test vibrations and to provide feedback to the controller.  The connectors are mounted to a rigid test fixture that is attached to the armature, a slip table or head expander.  Proper test fixture design is important so that resonances do not occur.  Also, proper mounting of the connectors is important to ensure they are supported sufficiently, and that relative motion does not occur due to poor mounting. 

The vibration test is run at specified frequencies, amplitudes, durations according to the chosen military, automotive, aerospace, etc. specifications.  During the test, the connectors are monitored for discontinuities using an event detector that can monitor discontinuities as quickly as 0.1 microseconds.  After testing is completed, the connectors are inspected for wear and failures. 

DES will promptly deliver a detailed test report that includes the customer’s name and address, the test dates, a summary of the test procedure, equipment & measuring system calibration information, operational test data, test observations & results, color pictures of the vibration test setup and color pictures of any failures. 

Why Perform Electrical Connector Vibration Testing?

The reasons behind subjecting electrical connectors to such rigorous testing are multifaceted. As mentioned above, it helps in identifying potential issues that could lead to field failures and in the development of connectors that can maintain performance in challenging settings. More specific reasons include the following: 

  1. Evaluating Performance and Reliability: Vibration testing assesses how well electrical connectors perform and maintain their reliability in diverse vibration environments.
  2. Detecting Discontinuities: The testing procedure aims to identify if electrical discontinuities occur when connectors are subjected to typical usage vibrations.
  3. Preventing Field Failures: By simulating real-world conditions, it aids in the prevention of field failures caused by issues like fretting fatigue, plating wear, cracks, broken wires, intermittent discontinuities, or loose components.
  4. Developing Robust Connectors: Vibration testing is instrumental in the development of stronger and more robust connectors suitable for demanding applications in sectors such as automotive, military, and space industries.

EIA-364-28 and other Electrical Contractor Vibration Test Standards

Adherence to industry standards is paramount when performing electrical connector testing in vibration environments. These standards provide comprehensive guidelines and procedures for conducting rigorous testing. They emanate from a variety of organizations such as the EIA-364-28 standard from the Electronics Industries Alliance. Here are some of the prominent standards employed in the evaluation of electrical connectors’ vibrational resilience:

  • EIA-364-28 – Vibration Test Procedure for Electrical Connectors and Sockets
  • GMW 3191 – Automotive Connector Test and Validation Specification
  • MIL-STD-1344A, Method 2005 – Military Standard, Test Methods for Electrical Connectors
  • SAE USCAR-2 – Performance Specification for Automotive Electrical Connector Systems

Precision-Driven Electrical Connector Testing

If you want to learn more about vibration testing, please read these related blog articles:

DES has the experience and equipment to perform accurate, repeatable testing of electrical connectors in our controlled, world class accredited lab.  We excel at designing and making customized setups and fixtures.  Contact DES today to discuss your electrical connector vibration testing requirements.

Share This: