Leveraging Highly Accelerated Life Testing for Aerospace Products

The margin for error is virtually nonexistent in the rapidly evolving aerospace sector. Aerospace products, from commercial satellites to advanced aircraft systems, must meet the highest standards of reliability and durability. This is where Highly Accelerated Life Testing (HALT) comes into play, offering a transformative approach to testing and ensuring the robustness of aerospace components before they even leave the ground.

HALT is a rigorous methodology designed to push aerospace products beyond their operational limits, identifying potential weaknesses and failure modes that traditional testing methods might miss. By subjecting aerospace products to extreme stress conditions—far beyond what they would encounter in their normal life span—HALT provides invaluable insights into the inherent durability and reliability of aerospace components.

The beauty of HALT lies in its ability to reveal the unknown. It accelerates the aging process, simulating years of wear and tear in a fraction of the time, thereby uncovering latent defects and vulnerabilities. This preemptive identification allows for critical design modifications and enhancements, significantly reducing the risk of costly failures and recalls post-launch.

For aerospace manufacturers, the implications of HALT are profound. It signifies a commitment to excellence and represents a strategic investment in the product’s lifecycle. By integrating HALT into the development process, aerospace companies can confidently navigate the complex landscape of product reliability, ensuring that their products are not just fit for purpose but are built to last.

Aerospace Testing Laboratory: Advancing Product Reliability with HALT

In the quest for unparalleled aerospace product reliability, our aerospace testing laboratory offers organizations the use of Highly Accelerated Life Testing (HALT) methodologies. HALT represents a commitment to excellence and a testament to our dedication to advancing aerospace technology.

The HALT process within our aerospace testing laboratory involves a series of accelerated stress tests, including rapid temperature cycling, 6 degrees of freedom random vibration tests at varying frequencies, and combined environment tests. These tests are designed to expose products to conditions far more severe than they would ever encounter in service. By doing so, Delserro Engineering Solutions can identify potential failure points and address them long before they become real-world issues.

Key Advantages of HALT in Our Aerospace Testing Laboratory:

  • Early Detection of Design Flaws: By applying stressors that exceed the normal operational limits, HALT helps uncover hidden weaknesses in product designs.
  • Cost-Efficiency: Identifying and rectifying potential failures before products hit the market significantly reduces the risk of costly recalls and brand damage.
  • Reduced Time to Market: Accelerated testing means faster validation of product robustness, enabling quicker transitions from design to production.
  • Customized Testing Strategies: Our aerospace testing laboratory tailors HALT protocols to match the specific requirements and challenges of each aerospace product.

Through the strategic application of HALT, our aerospace testing laboratory supports the industry’s continuous drive toward innovation and reliability. We help our clients achieve the highest standards of performance and dependability in their aerospace endeavors.

Embrace the future of aerospace product testing with us. Discover how our HALT methodologies can elevate your products’ reliability to new heights.

The Impact of HALT on Aerospace Testing and Product Integrity

Highly Accelerated Life Testing (HALT) has significantly influenced aerospace testing practices, leading to more resilient and reliable aerospace products. HALT extends beyond traditional testing methods by focusing on identifying potential failure modes early in the product development cycle.

The practical benefits of integrating HALT into aerospace testing include:

  • Early Detection and Rectification of Flaws: By pushing components beyond their operational limits, HALT helps uncover hidden weaknesses in the design and materials, allowing for early modifications.
  • Comprehensive Stress Testing: HALT subjects aerospace products to a variety of stressors, including extreme temperatures and vibrations, to ensure they can withstand a broad range of operational environments.
  • Support for Innovation: The rigorous demands of HALT encourage the exploration of new materials, designs, and manufacturing techniques, driving innovation in aerospace technology.
  • Risk Mitigation: Identifying potential issues before products reach the market minimizes the risk of costly recalls and enhances the overall safety of aerospace missions.
  • Streamlined Product Development: HALT can reduce the time required for product testing and validation.
  • Stakeholder Confidence: Demonstrating a commitment to thorough testing and product reliability helps build trust among manufacturers, regulatory agencies, and users.

HALT’s role in aerospace testing is to provide a practical, systematic approach to improving product reliability and integrity. It’s about making informed decisions based on comprehensive data. Through the application of HALT, the aerospace industry can achieve a balance between innovation and reliability.

Improve Your Aerospace Products with HALT

Adopting Highly Accelerated Life Testing (HALT) for your aerospace products is a strategic move toward securing a competitive edge in the aerospace industry. By incorporating HALT into your product development process, you’re committing to the highest standards of safety, durability, and performance.

Our aerospace testing laboratory is equipped with state-of-the-art HALT technology and a team of experienced engineers dedicated to helping you achieve excellence in product development. Our aerospace testing laboratory’s ISO/IEC 17025 and ISTA accreditation are a testament to our capability to execute tests that are both precise and reliable. We understand the unique challenges of the aerospace sector and are committed to providing tailored testing solutions that meet your specific needs.

In the dynamic field of aerospace, staying ahead means continually pushing the boundaries of what’s possible. Partner with Delserro Engineering Solutions to harness the power of HALT and take your aerospace products to new heights.

Contact us today to learn more about how we can support your journey toward unparalleled reliability and success in the aerospace industry.

Share This:

Delserro Engineering Solutions Featured in Assembly Magazine

Assembly Magazine logo

DES president Gary Delserro is featured in an article published in Assembly Magazine on July 9, 2021.  Titled “Accelerated Life Testing,” the article discusses different types of manufacturing life testing and quotes Gary with reference to highly accelerated life testing (HALT):

“Companies have reported savings in the millions after using HALT,” claims Delserro. “The test can accelerate a product’s aging process from actual months into test minutes, and it can help you discover weaknesses in your product during the design stage. Combined vibration, temperature and electrical stress variables, as well as internal fluid pressure, are typically used during HALT to induce failures and uncover fault points. By using combinations of loads, we can uncover design or manufacturing process flaws before they reach your customer.”

The entire article can be found on Assembly’s website

Share This:

Door Open/Close Accelerated Life Test Case Study

Customer Goal

A customer contacted DES, seeking to create a reliability test plan for their product based on customer usage, new features and design limits.  One of the concerns identified by the customer was the need for an accelerated life test which tested whether their “door assembly” product met the design specification for usage.  In other words, the goal was to create an automated test solution which opened and closed cabinet doors to the estimated amount they would see during a lifetime in the field.

Continue reading Door Open/Close Accelerated Life Test Case Study

Share This:

Circuit Board HALT Testing Case Study

HALT Test Setup on Circuit Boards
HALT Test Setup on Circuit Boards

Customer Goal

A customer approached DES looking to perform Highly Accelerated Life Testing (HALT) on a new circuit board design.  DES and the customer agreed to test the circuit boards using DES’s traditional HALT test procedure which calls for hot/cold temperature steps followed by rapid temperature ramping, vibration steps and combined temperature and vibration stresses.  HALT testing on electrical componentry is quite common across industry to expose design weaknesses; both mechanical and electrical (What is HALT and Why Perform HALT?).  Typical failures include poor solder connections, overheating, component failure, etc. (What Kind Of Failures Occur During HALT?)

Continue reading Circuit Board HALT Testing Case Study

Share This:

Rapid HALT – A Cost Effective Alternative to HALT

Rapid Highly Accelerated Life Testing or Rapid HALT is a reliability test method that is used to expose product weaknesses.  A Rapid HALT procedure is a modification of a Classical HALT procedure.  For more information about Classical HALT procedures, refer to the following blog articles:

A Rapid HALT is an abbreviated HALT, typically one day of tests, making it a great cost-effective solution for those seeking faster qualitative results.  Exposing a product to a Rapid HALT early in the design process can help reduce product development time and cost by enabling manufacturers to identify flaws or areas of improvement before it’s too late.

Rapid HALT’s are a good tool for assessing the reliability of different suppliers of components but can also be used to assess the reliability of less complicated products.  For example, DES has performed Rapid HALT’s to evaluate the reliability of different suppliers of power supplies, cooling fans, and LED’s.  DES has also performed a Rapid HALT to study different fastening methods in order to determine which was more robust.

DES Rapid HALT Profile
Figure 1. DES Rapid HALT Profile

Continue reading Rapid HALT – A Cost Effective Alternative to HALT

Share This:

Cooling Fan Reliability Testing Case Study

Fan Reliability Testing Case StudyCustomer Challenge

A customer approached DES looking to find an accelerated test solution for an AC powered cooling fan used in one of their products.  The product had been established in the marketplace and the company was now looking for ways to reduce cost by looking at different cooling fan suppliers.  Most fans, however, have a mean life rated for over 20,000 hours, so a typical accelerated life test would require a significant amount of time and money. 

Continue reading Cooling Fan Reliability Testing Case Study

Share This:

Accelerated Life Product Reliability Testing of a Carrying Handle

HALT Accelerated Product Life Cycle Testing
Customized ALT Setup by DES

A leading medical technology company contracted DES to perform Product Reliability Testing of a carrying handle. A sample of the test can be seen below and in our video library. The carrying handle had to be pulled, released, rotated and subjected to a sizable lifting force, approximately 20,000 times during its life time. 

DES has considerable capability to complete product reliability testing. The main challenge for this project was that each cycle consisted of complex motion. The motion included pulling/releasing the handle to unlatch/latch a pin while rotating the handle. In order to achieve this, DES had to design fixtures and mechanisms that would reposition the carrying handle into each of the designated positions. The number of cycles was automatically counted until failure or 20,000 cycles were completed. During the test, the force to pull the handle was measured at various intervals. The Accelerated Life Testing was completed successfully demonstrating a high reliability.

Please visit our video library to see more examples of DES’s capabilities.

Share This:

Accelerated Life Cycle Testing of a Case Handle

A leading commercial product manufacturer contracted DES to perform Accelerated Life Cycle Testing of a case handle.  A sample of the test can be seen below and in our video library. The handle had to be opened and closed many thousands of times during its life time. In addition, two thirds of the cycles had to be completed with the sample exposed to hot and cold temperatures.

Continue reading Accelerated Life Cycle Testing of a Case Handle

Share This:

Constant Temperature Accelerated Life Testing using the Arrhenius Relationship

When products are mainly exposed to temperature stresses in the field, Constant Temperature Accelerated Life Testing is used to simulate product life. Products can be tested at temperatures above their normal use temperature during Constant Temperature Accelerated Life Testing in order to accelerate aging. Defects or failure modes that would show up after many years in the field at normal use temperatures can be detected in short times in an Accelerated Life Test. In Constant Temperature Accelerated Life Testing, the typical failure mode is dependent on migration/diffusion or chemical reactions. These types of failures are typically found in electronic components but can also occur in other types of products or materials such as adhesives, batteries, etc. The Arrhenius Equation relates reaction rates to temperature and is used to correlate time in the field at normal use temperature to a Constant Temperature Accelerated Life Test. It should be noted that constant temperature testing will not precipitate failure modes due to thermal cycling. Temperature or thermal cycle testing will be discussed in another blog article.

The Arrhenius Equation that relates reaction rates to temperature is:







Continue reading Constant Temperature Accelerated Life Testing using the Arrhenius Relationship

Share This: