Rapid HALT – A Cost Effective Alternative to HALT

Rapid Highly Accelerated Life Testing or Rapid HALT is a reliability test method that is used to expose product weaknesses.  A Rapid HALT procedure is a modification of a Classical HALT procedure.  For more information about Classical HALT procedures, refer to the following blog articles:

A Rapid HALT is an abbreviated HALT, typically one day of tests, making it a great cost-effective solution for those seeking faster qualitative results.  Exposing a product to a Rapid HALT early in the design process can help reduce product development time and cost by enabling manufacturers to identify flaws or areas of improvement before it’s too late.

Rapid HALT’s are a good tool for assessing the reliability of different suppliers of components but can also be used to assess the reliability of less complicated products.  For example, DES has performed Rapid HALT’s to evaluate the reliability of different suppliers of power supplies, cooling fans, and LED’s.  DES has also performed a Rapid HALT to study different fastening methods in order to determine which was more robust.

DES Rapid HALT Profile
Figure 1. DES Rapid HALT Profile

Continue reading Rapid HALT – A Cost Effective Alternative to HALT

Share This:

Qualification Testing on Aerospace Connectors

DES recently performed qualification testing on aerospace connectors which involved combined temperature and sinusoidal vibration testing, random vibration testing and shock testing.  Combined temperature and sinusoidal vibration tests were performed per EIA 364-28F EIA 364-28F required test conditions of 10-2000 Hz, 20G maximum acceleration sweeps at temperatures of -54°C and 200°C over the course of 4 hours per axis.  Random vibration tests were also performed per EIA 364-28F.  Random vibrations at 50-2000 Hz, 46.3 Grms were applied to the connectors for 8 hours per axis.  The random vibrations were applied at room temperature.  Finally, the connectors were subjected half sine shocks per EIA 364-27C.  The shock requirements were three shocks per polarity, per axis at 300G over the duration of 3msec.  A sample shock plot can be seen in Figure 1.

Sample Shock Testing Chart
Figure 1 – Sample Shock Test Plot

Continue reading Qualification Testing on Aerospace Connectors

Share This:

Package Testing Using Combined Temperature & Vibration

Package Testing - Combined Temperature & VibrationNowadays global markets and expedited shipping methods expose packages to less than ideal conditions during the transport process.  International Safe Transit Association (ISTA), International Air Transport Association (IATA), International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) all contain protocols and requirements used to evaluate product package design.  Some of these test profiles require combined environments such as combined temperature and vibration testing.  This type of testing requires specialized equipment, set up and experience from the lab conducting the test.

Continue reading Package Testing Using Combined Temperature & Vibration

Share This:

Fastener Vibration Testing

fastener vibration testing servicesDES recently performed fastener vibration testing per MIL standard, MIL-F-25173A.  MIL-F-25173A is a military specification aimed at determining qualification criteria for aircraft fasteners and equipment.  In this case, DES focused on the vibration testing of a particular fastener to be used in aircraft applications.  Tests were conducted on DES’s Unholtz-Dickie Electrodynamic Shaker.  The MIL-F-25173A standard requires specimens to be subject to sinusoidal vibration testing, cycled between 10 and 55 Hz uniformly and with a constant 0.06 inDA displacement.  Tests shall span the course of 90 minutes over three perpendicular axes.

Continue reading Fastener Vibration Testing

Share This: