How to Implement a HASS Program

This article is a general outline on how to implement a HASS program after a successful HALT has been performed and corrective actions have been completed for any weaknesses found during HALT.  For more information about HASS, please read our blog, What is HASS Testing?  For more information about HALT, please read our blogs

Continue reading How to Implement a HASS Program

Share This:

DES Performs Testing for NASA Psyche Program

NASA Psyche ProgramDelserro Engineering Solutions (DES) was proud to recently perform testing for the NASA Psyche Program.  More information about this program can be found at the following web link https://www.jpl.nasa.gov/missions/psyche/.

DES was contracted by a local manufacturer to help qualify their product for use in the demanding Psyche spacecraft environment. DES’s role was to perform specialized pyroshock testing and vibration testing on their products.

What sets DES apart from other labs is our in-depth experience and technical capability to understand and reproduce the most complicated vibration and shock profiles. DES continues to perform the most complex vibration and shock tests on products that are used in outer space, rockets, missiles, automotive & truck environments, military environments, etc.

For more information on Pyroshock Testing, Shock Testing, Vibration Testing or other testing services, contact DES or call 610.253.6637.

Share This:

MIL-STD 810, Method 516, Shock Testing Procedure VI – Bench Handling

This is the final part of a series of blog posts concerning the MIL-STD 810 Shock Section, Method 516.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to run your MIL-STD-810 test.  For more information, please check out our DES shock testing services page and our other MIL-STD-810 shock testing blog articles:

MIL-STD 810, Method 516, Shock Testing Overview

MIL-STD 810, Method 516, Shock Testing Procedure I – Functional Shock

MIL-STD 810, Method 516, Shock Testing Procedure II – Transportation Shock

MIL-STD 810, Method 516, Shock Testing Procedure III – Fragility

MIL-STD 810, Method 516, Shock Testing Procedure IV – Transit Drop

MIL-STD 810, Method 516, Shock Testing Procedure V – Crash Hazard Shock

Continue reading MIL-STD 810, Method 516, Shock Testing Procedure VI – Bench Handling

Share This:

MIL-STD 810, Method 516, Shock Testing Procedure V – Crash Hazard Shock

This is another part of a series of blog posts concerning the MIL-STD 810 Shock Section, Method 516.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to run your MIL-STD-810 test.  For more information, please check out our DES shock testing services page and our other MIL-STD-810 shock testing blog articles:

MIL-STD 810, Method 516, Shock Testing Overview

MIL-STD 810, Method 516, Shock Testing Procedure I – Functional Shock

MIL-STD 810, Method 516, Shock Testing Procedure II – Transportation Shock

MIL-STD 810, Method 516, Shock Testing Procedure III – Fragility

MIL-STD 810, Method 516, Shock Testing Procedure IV – Transit Drop

Crash hazard shocks apply to materiel mounted in air or ground vehicles.  Shock testing according to Procedure V of MIL-STD 810, Method 516 is intended to test the strength of products during a crash situation to verify that parts do not break apart, eject and become a safety hazard.  Failures of this nature could cause dangerous projectiles that could impact occupants or create significant damage to the vehicle.

This article will focus on the shock test condition when measured field data is not available and the testing will use classical shock impulses.  The terminal peak sawtooth is the default classical shock pulse to be used for this condition.  Figure 516.7-10 from MIL-STD-810 shows its shape and tolerance limits.  Table 516.7-IV contains the terminal peak sawtooth default test parameters for Procedure V – Crash Hazard Shock.  In limited cases a half sine shock impulse is specified.  Its shape and tolerance limits are shown in Figure 516.7-12.

Continue reading MIL-STD 810, Method 516, Shock Testing Procedure V – Crash Hazard Shock

Share This:

MIL-STD 810, Method 516, Shock Testing Procedure IV – Transit Drop

This is another part of a series of blog posts concerning the MIL-STD 810 Shock Section, Method 516.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to run your MIL-STD-810 test.  For more information, please check out our DES shock testing services page and our other MIL-STD-810 shock testing blog articles:

MIL-STD 810, Method 516, Shock Testing Overview

MIL-STD 810, Method 516, Shock Testing Procedure I – Functional Shock

MIL-STD 810, Method 516, Shock Testing Procedure II – Transportation Shock

MIL-STD 810, Method 516, Shock Testing Procedure III – Fragility

Method 516, Procedure IV is for testing products that could be accidently dropped such as when they are removed from a shelve or dropped when handling.  The test item is physically dropped onto a hard surface to produce the shock.  Products can be tested inside their transit case or unpackaged.  Typically, they would be tested in the configuration that is normally used for transportation, handling, or a combat situation.

Continue reading MIL-STD 810, Method 516, Shock Testing Procedure IV – Transit Drop

Share This:

MIL-STD 810, Method 516, Shock Testing Procedure III – Fragility

This is another part of a series of blog posts concerning the MIL-STD 810 Shock Section, Method 516.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to run your MIL-STD-810 test.  For more information, please check out our DES shock testing services page and our other MIL-STD-810 shock testing blog articles:

Procedure III is used to determine what shock conditions will cause a product to stop operating, degrade or fail.  The shock magnitudes are systematically increased until a problem occurs.  This procedure can be also performed using environmental temperature conditioning.

This article will assume that the fragility shocks expected to be encountered by the product are not complex transients.  Therefore, the trapezoidal classical shock pulse, as defined in Figure 516.7-11 and Table 516.7-V from MIL-STD-810, Method 516 would be used for Fragility testing.

Continue reading MIL-STD 810, Method 516, Shock Testing Procedure III – Fragility

Share This:

DES is an A2LA Accredited Lab

Delserro Engineering Solutions (DES) has achieved accreditation to ISO/IEC 17025 by the American Association for Laboratory Accreditation (A2LA).  This accreditation further demonstrates DES’s technical competence and our strong commitment to quality.  To see the scope of our accreditation, please click on the following image:

Delserro Engineering Solutions (DES) is an industry-wide leader in the field of product reliability test methods including Accelerated Product Life Testing, Vibration, Shock & Constant Acceleration Testing, Environmental and Climatic Testing.

For more information contact DES or call 610.253.6637.

 

Share This:

MIL-STD 810, Method 516, Shock Testing Procedure II – Transportation Shock

This is another part of a series of blog posts concerning the MIL-STD 810 Shock Section, Method 516.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to run your MIL-STD-810 test.  For more information, please check out our DES shock testing services page and our other MIL-STD-810 shock testing blog articles:

MIL-STD 810, Method 516, Shock Testing Overview

MIL-STD 810, Method 516, Shock Testing Procedure I – Functional Shock

Continue reading MIL-STD 810, Method 516, Shock Testing Procedure II – Transportation Shock

Share This:

RTCA DO-160G Vibration and Shock Testing

DES recently completed RTCA DO-160G vibration and shock testing for DB Integrations in Allentown PA, a manufacturer of aircraft components.  The testing was performed on ARINC 600 Mounting Trays.  The trays were vibration tested for use on fixed wing aircraft (Section 8, Category S) and for use on helicopters (Section 8, Category U2).  Shock testing was also performed per Section 7, Category A in RTCA DO-160G.  The trays withstood the rigorous testing that took 3 days to complete.

DES has extensive experience performing testing to standards such as RTCA DO-160G.  For more information contact DES or call 610.253.6637. 

Share This: